Analisis Regresi Komponen Utama Robust dengan Metode Minimum Covariance Determinant – Least Trimmed Square (MCD-LTS)
نویسندگان
چکیده
منابع مشابه
Frequency of thalassemia carrier and Hb variant and the quality of stored donor blood
Metode: Penelitian ini menggunakan disain potong lintang dengan sampel berasal dari 138 donor darah. Dilakukan skrining talasemia dan Hb varian pada keseluruhan sampel, yang meliputi pemeriksaan hitung sel darah lengkap, analisis Hb metode HPLC dan analisis DNA untuk deteksi pembawa sifat talasemia α. Uji kualitas darah simpan dilakukan melalui penghitungan persen hemolisis sel darah merah pada...
متن کاملSmall Sample Corrections for LTS and MCD
The least trimmed squares estimator and the minimum covariance determinant estimator [5] are frequently used robust estimators of regression and of location and scatter. Consistency factors can be computed for both methods to make the estimators consistent at the normal model. However, for small data sets these factors do not make the estimator unbiased. Based on simulation studies we therefore...
متن کاملRobust Estimation Using Least Trimmed Squares
A robust procedure is proposed, starting from least trimmed squares as the initial estimator. The asymptotic distribution of the two-step and multi-step estimators is derived. This allows the use with a pre-specified efficiency under normality. It is argued that the good performance, together with the simplicity of the procedure, should make this the robust estimator of choice for applied work.
متن کاملThe minimum weighted covariance determinant estimator
In this paper we introduce weighted estimators of the location and dispersion of a multivariate data set with weights based on the ranks of the Mahalanobis distances. We discuss some properties of the estimators like the breakdown point, influence function and asymptotic variance. The outlier detection capacities of different weight functions are compared. A simulation study is given to investi...
متن کاملOutlier Detection for Support Vector Machine using Minimum Covariance Determinant Estimator
The purpose of this paper is to identify the effective points on the performance of one of the important algorithm of data mining namely support vector machine. The final classification decision has been made based on the small portion of data called support vectors. So, existence of the atypical observations in the aforementioned points, will result in deviation from the correct decision. Thus...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Jurnal Siger Matematika
سال: 2020
ISSN: 2721-5849,2721-6853
DOI: 10.23960/jsm.v1i1.2472